Writing Microsoft SQL Server
Extended Stored Procedures

by Berend de Boer

I\/I icrosoft SQL Server has the
powerful capability to make
functions in DLLs available as
stored procedures. Microsoft calls
them Extended Stored Procedures.
In this article I'll describe how to
write Extended Stored Procedures
and present a nice object-oriented
framework which makes the task
extremely easy. I'll describe some
example programs created with
this framework, and finally I'll tell
you how to install Extended Stored
Procedures in SQL Server.

What Are Extended

Stored Procedures?

Extended Stored Procedures (I'll
call them XPs from now on) are
part of Microsoft’s Open Data Serv-
ices (ODS) for SQL Server. With
ODS you can do three things.

Firstly, you can make routines in
a DLL available as stored proce-
dures to any SQL Server user.
Technically this DLL is part of SQL
Server, therefore programmer
errors may corrupt your SQL
Server. Writing such XPs is the
subject of this article.

Secondly, you can write proce-
dure server applications. These
are similar to XPs, but run as sepa-
rate network server applications,
they could even be running on a dif-
ferent machine (for a 3-tier archi-
tecture). | won’t discuss them in
this article.

Lastly, you can write gateways to
non-SQL Server based environ-
ments. | won’tdiscuss these either.

Making parts of your application
available on the server has some
advantages. Some things are easy
to write in Delphi, but difficult, or
even impossible, wusing SQL
Server’s Transact SQL. Delphi
routines can run much faster than
Transact SQL, which can be
important for complex numerical
calculations, for example. You can
also make interfaces with other

48

1 Check that the caller of the procedure has provided all of the required
parameters and that each parameter is of the appropriate datatype.
Return an appropriate message if not.

2 Define the columns for returning a result set.

3 Create each record for returning to the caller.

4 Set up any output parameters and return status data used by the

procedure.

5 When finished returning results, send the results completion message
using srv_senddone with the SRV_DONE_MORE status flag.

6 Return from the procedure with the desired Transact-SQL return status.

O Table 1: Tasks for Extended Stored Procedures

programs, databases and so on.
For example, you could write an XP
that accepts the name of a Paradox
table and returns the contents of
the tableasaSQL Server result set.

Writing Extended

Stored Procedures

XPs live in DLLs and can therefore
be written in any language which
can produce DLLs, which of course
includes Delphi. Before going into
detail about how to write XPs, first
let’s consider some examples from
a user’s point of view.

Let’'s assume we have an XP
called xp_incbyonel which incre-
ments a given number by one. We
can call xp_incbyonel as follows:

declare @mynumber integer

select @mynumber =1

exec master..xp_incbyonel @mynumber
output

select @mynumber

The declare statement declares a
variable @mynumber of type integer.
Next we set it to one, pass it to the
XP and allow the XP to modify it by
appending output to the parame-
ter. Finally we display the number
with a select statement, to see if it
has been updated. The result
should be 2 of course.

The Delphi Magazine

In the following example we
have an XP which returns an
output parameter. XPs can also
return a result set. The example
xp_incbyone2 returns the number
as a result set. The code to call it
would be:

declare @mynumber integer
select @mynumber = 1
exec master..xp_incbyone2 @mynumber

xp_incbyone2 will return a table of
just one column and one row con-
taining the wvalue 1. Both
xp_incbyonel and xp_incbyone2 are
described in detail in the next
section, where | present the Delphi
framework.

Each implementation of an XP
needs to do the same things: see
Table 1 above, which is taken from
the Microsoft SQL Server Program-
mers’ Toolkit. Step 1 is necessary
because, unless you are using
normal SQL stored procedures, it
is up to the programmer to vali-
date any user-specified parame-
ters for XPs. Steps 2 and 3 are
optional and are applicable only if
you return a result set. Step 4 is
also optional and applies only if
you return output parameters.

So, now let’s see how to make
the whole thing a lot easier...

Issue 31

The Framework

The C programmer who wants to
develop XPs needs to install the
Microsoft BackOffice resource Kit,
which contains all the required
header files and demonstration
programs. Unfortunately, Borland
has not supplied a translation of
these header files with Delphi.
Therefore | had to translate the
most important parts by hand into
Pascal. This means that the Back-
Office resource kit is not needed if
you use my framework to write
your own XPs. If you want to add
more pieces, though, you will need
the resource kit. Or you could
always ask me nicely and if I've
time | might expand the framework
to cover the missing pieces!

Look again at Table 1 for the
tasks an XP should do. The frame-
work makes Steps 1 through 4
quite a lot easier by providing
Delphi specific type conversions,
Steps 5 and 6 are automatically
done by the framework.

To use the framework, first
create an object of class TSQLXProc
and implement its Execute method.
Then write a procedure that allo-
cates this object, calls its Run
method and frees the object. The
name of this procedure should be
the same as the name of your
extended stored procedure.

To make this process more
concrete, let's implement the
xp_incbyonel stored procedure.
The first step is to create a new
object based on TSQLXProc and
implement its Execute method. Its
header looks like this:

type
TXXPIncByOnel = class(TSQLXProc)
function Execute: Boolean;
override;
End;

The Execute method looks like this:

function TXPIncByOnel.Execute:

Boolean;

begin
Params[1] := Params[1] + 1;
Result := True;

End;

The second step is to write a proce-
dure that calls this object. This is

March 1998

function xp_incbyonel(srvproc: PSRV_PROC): SRVRETCODE;

const
ExpectedParams = 1;

var
xp: TSQLXProc;
begin

xp := TXPIncByOnel.Create(srvproc, ExpectedParams);

Result := xp.Run;
Xp.Free;
end;

O
[
n
=,
>
(o]
-

[Table 2: Supported types for use with DescribeColumn

the procedure that SQL Server is
actually calling. For xp_incbyonel it
looks like Listing 1. It’s that easy!

Let’s look in more detail at the
first step. The only thingyou’ll ever
need to do is implement the Exe-
cute method. This function returns
True Or False. If False is returned,
an error is returned to the calling
application or user. Exceptions are
caught by the code that calls your
Execute method and a similar error
is also returned to the calling
application or user.

You can get access to the
parameters of a stored procedure
by using the Params property.
Parameters are numbered from
one upwards. As noted earlier, SQL
Server does no type checking on
XP parameters. The framework
returns parameters as variants, so
it's a bit more robust against differ-
ent parameters, but variant con-
version errors may occur if a
parameter type does not match.
You might want to use the ODS API
call srv_paramtype to explicitly
retrieve and check parameter
types, but so far I've not found a

The Delphi Magazine

need for this. Another solution for
checking parameter types is to use
the standard VarType function.

See Table 2 for a list of Transact
SQL datatypes and corresponding
Delphi datatypes.

If a parameter is Nu11, the Params
property returns the variant type
Nul1. Equally, if you want to return
Null, set the corresponding
parameter in Params to Null.

Let’s now look in more detail at
the second step. This will probably
always be the same, except for the
value of the ExpectedParams con-
stant and the particular object to
instantiate. This procedure i
called by SQL Server with one
parameter: srvproc. We pass this
parameter to the instantiated
object, along with the number of
parameters which it should
expect. If the actual number of
parameters is different to this an
error message will be sent back to
the calling application or user.
Pass zero if you don’'t want to
check for the number of parame-
ters, for example to support a
variable number of parameters.

(%]

4

©

function TXPIncByOne2.Execute: Boolean;

var
myint: integer;
begin

DescribeColumn('my column name', SRVINT4, 4, SRVINT4, 4, @myint);

Myint := Params[1] + 1;
SendRow;
Result := True;

end;

0 Listing 2

function xp_incbyone2(srvproc: PSRV_PROC): SRVRETCODE;

const
ExpectedParams = 1;

var
xp: TSQLXProc;
begin

Xp := TXPIncByOne2.Create(srvproc, ExpectedParams);

Result := xp.Run;
xp.Free;
end;

0 Listing 3

function TXPDiskList.Execute: Boolean;
var

drivename: char;

space_remaining: Int32;

drivenums: Int32;

rootname: string;

SectorsPerCluster, BytesPerSector,

NumberOfFreeClusters, TotalNumberOfClusters: dword;

function IsDrive(drive: char): Boolean;

begin

end;
begin

IsDrive := (drivenums and (1 shl (Ord(drive) - Ord('A')))) <> 0;

DescribeColumn('drive', SRVCHAR, 1, SRVCHAR, 1, @drivename);
DescribeColumn('bytes free', SRVINT4, 4, SRVINT4, 4, @space_remaining);

drivenums := GetlogicalDrives;

for drivename := 'C' to 'Z' do begin

if IsDrive(drivename) then begin
rootname := drivename + ':\';

GetDiskFreeSpace(PChar(rootname), SectorsPerCluster, BytesPerSector,
NumberOfFreeClusters, TotalNumberOfClusters);

space_remaining :=

SectorsPerCluster * NumberOfFreeClusters * BytesPerSector;

SendRow;
end;
end;
Result := True;
end;

0 Listing 4

Next we call the Run method of
the instantiated object, which in
turn will call our Execute method
(surrounded by, among other
things, a try..except block).
Finally we free the object.

Result Sets
Now let’'s tackle an XP which
returns a result set. Its header is:

type
TXPIncByOne2 = class(TSQLXProc)
function Execute: Boolean;
override;
End;

and its body is shown in Listing 2.

The procedure to call this object is
shown in Listing 3.

50

We now have a slightly more
complicated Execute method. In
case we want to return a result set,
we need to describe every row in
the resulting table: its column
name, destination type, destina-
tion length, source type, source
length and a pointer to the source
data. You should call Describe-
Column for every column in the
result table.

The next step is to fill the source
data: that’s the assignment to
myint. The row is now complete, so
we can send it to SQL Server using
SendRow. You should prepare
source data and call SendRow for
every row in the result table. And
finally you just return True and
Exit. After that SQL Server will

The Delphi Magazine

send the entire result table to the
client.

The xp_incbyone2 procedure is
still a simple process of calling the
object and exiting. In the remain-
ing examples | will omit this part.

More Examples
I implemented two of the sample
XPs which Microsoft implemented
in their xp.c source file. The first
one simply copies the contents of
the first parameter to the second
parameter. The second example
returns the free space from every
drive available on the SQL Server
computer. To avoid name clashes |
called the first XP xp_delphiecho
instead of xp_echo. The second one
is called xp_delphidisklist instead
of xp_disklist. | think xp_echo
especially looks much more ele-
gant than Microsoft’s sample pro-
gram: you really should have a
look at xp.c!

The code for xp_delphiecho is
simply:

function TXPEcho.Execute:

Boolean;

begin
Params[2] := Params[1];
Result := True;

End;

and the code for xp_delphidisklist
is shown in Listing 4.

In the first two lines of Listing 4
the description of the result table
is given, which consists of two
columns: drive and bytes free.
Next, for every drive we fill the
variables drivename and space_
remaining and send back the row
using SendRow.

Compiling The DLL

The DLL containing the Extended
Stored Procedures is just a normal
DLL, nothing special. So you
should start with the T1ibrary key-
word and export the procedures
which instantiate the framework
object (see the sample program
XPDELPHI.DPR on the disk).

Installing XPs On SQL Server

All of the material in this section
can also be found in the Microsoft
SQL Programmers Toolkit or in the
Microsoft Transact-SQL reference.

Issue 31

When you have compiled your
DLL you have to install it in the
appropriate directory. Copy the
file to the same directory as the
standard SQL Server DLL files. Usu-
ally this directory is something like
C:\MSSQL\BINN, note ‘BINN’ with
two n’s not the BIN directory with a
single n which also exists!

As with other DLLs, once the
Extended Stored Procedure DLL is
placed in the appropriate direc-
tory and the appropriate paths are
set, you can make its functions
available to users immediately:itis
not necessary to restart the server.

For each function provided in an
Extended Stored Procedure DLL, a
SQL Server system administrator
must run the sp_addextendedproc
system procedure, specifying the
name of the function and the name
of the DLL in which that function
resides. For example:

Sp_addextendedproc
‘xp_delphiecho’, ‘xpdelphi.dl1’

This command registers the func-
tion xp_delphiecho, located in the
file xpdelphi.dll, as a SQL Server
Extended Stored Procedure. You
must run sp_addextendedproc in the
master database. To drop individ-
ual extended stored procedures, a
system administrator uses the
system procedure sp_dropextend-
edproc.

SQL Server loads an Extended
Stored Procedure DLL as soon as a
call is made to one of the DLL’s
functions. The DLL remains loaded
until the server is shut down or
until the system administrator
uses the pBcc command to unload
it. For example:

DBCC xpdelphi(FREE)

unloads XPDELPHI.DLL, allowing
the system administrator to copy
in a newer version of this file with-
out shutting down the server. You
probably will need this command
quite a lot to debug your XPs!
Once asystem administrator has
added an Extended Stored Proce-
dure, users can find out what new
functions are available by using the
system procedure sp_helpextend-
edproc. When used without an

52

argument, sp_helpextendedproc
displays all Extended Stored Pro-
cedures that are currently regis-
tered with the master database. If
you specify an Extended Stored
Procedure name as an argument,
sp_helpextendedproc checks if that
function is currently available.

Extended Stored Procedures are
subject to the same security
mechanisms as regular stored pro-
cedures. For example, to give every
right to the xp_delphiecho Xp, run
the following commands in the
master database:

grant exec on xp_delphiecho
to public
go

Every user would then be able to
call xp_delphiecho from every data-
base by prefixing xp_delphiecho
with master. For example, to call
xp_delphiecho from the pubs
database you say:

exec master..xp_delphiecho
@paramin, @paramout output

Conclusions
Several source files are provided
on this month’s disk. XPNUIS.DPR is
a sample DLL project containing
all the XPs described in this article.
XPNUIS.SQL is a script to add all the
XPs in XPNUIS.DLL to the master
database. Finally, ODSXP.PAS is the
unit containing my framework.
Now that writing Microsoft SQL
Server Extended Stored Proce-
dures is a breeze I'll look forward
to hearing from you about the
interesting applications you have
developed using this package!

Berend de Boer is President of
Nederware, a software engineer-
ing firm in the Netherlands, and
can be contacted by email at
berend@pobox.com

Here’s some of what you can find:

Article index database: online or downloadable,
with new data for each issue uploaded monthly

Details of what’s coming up in the next issue

Back issues: contents and availability

Lots and lots of sample articles from back issues

Links to other great Delphi sites

The Delphi Magazine Book Review Database

Plus, from the same location you can reach
the Developers Review website and find:

News from the software development world

: Contacts Listing, with addresses, telephone,
fax, email and website details for loads of companies in
software development, including manufacturers, re-
tailers, consultants, trainers..

Coming soon: our own local search engine!

The Delphi Magazine

Issue 31

	What Are Extended Stored Procedures?
	Writing Extended Stored Procedures
	The Framework
	Result Sets
	More Examples
	Compiling The DLL
	Installing XPs On SQL Server
	Conclusions
	On Our Web Site:

